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Abstract  1 

Introduction: Peripheral nerve involvement is common in mitochondrial disease but often 2 

unrecognised due to the prominent central nervous system features. Identification of the 3 

underlying neuropathy may assist syndrome classification, targeted genetic testing and 4 

rehabilitative interventions.  5 

Methods: Clinical data and the results of nerve conduction studies were obtained 6 

retrospectively from the records of four tertiary children’s hospital metabolic disease, 7 

neuromuscular or neurophysiology services. Nerve conductions studies were also performed 8 

prospectively on children attending a tertiary metabolic disease service. Results were 9 

classified and analysed according to the underlying genetic cause. 10 

Results: Nerve conduction studies from 27 children with mitochondrial disease were 11 

included in the study (mitochondrial DNA (mtDNA)  – 7, POLG – 7, SURF1 – 10, PDHc 12 

deficiency – 3). Four children with mtDNA mutations had a normal study while three had 13 

mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely 14 

unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute 15 

stroke-like episode that resolved over 12 months. Five children with POLG mutations and 16 

disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second 17 

decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. 18 

Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three 19 

children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the 20 

neuropathy associated with mitochondrial disease was not length-dependent. 21 

Conclusions: This is the largest study to date of peripheral neuropathy in genetically- 22 

classified childhood mitochondrial disease. Characterising the underlying neuropathy may 23 

assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the 24 

assessment of children with suspected mitochondrial disease. 25 
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1.  Introduction 1 

Childhood mitochondrial diseases have a heterogeneous phenotype with many 2 

different systems being affected including the peripheral nervous system. Around 30% of 3 

children with a mitochondrial disease have an associated peripheral neuropathy (Colomer, et 4 

al., 2000), but the neuropathy is often unrecognised due to the overwhelming central nervous 5 

system manifestations. Mutations in nuclear genes responsible for mitochondrial dynamics 6 

and axonal transport, including MFN2 and GDAP1, are recognised causes of Charcot-Marie-7 

Tooth disease (CMT) (Niemann, et al., 2005; Züchner, et al., 2004). Recently, mutations in 8 

MT-ATP6 and SURF1, genes known to cause Leigh syndrome and other multisystemic 9 

mitochondrial diseases, have also been shown to cause phenotypes characterised 10 

predominantly by a peripheral neuropathy (Echaniz-Laguna, et al., 2013; Pitceathly, et al., 11 

2012).  Identifying the presence of a peripheral neuropathy and defining its characteristics 12 

may help with classifying the mitochondrial syndrome and targeted genetic testing (Menezes 13 

and Ouvrier, 2012). The associated peripheral neuropathy may be symptomatic and disabling 14 

and specific treatment and rehabilitative intervention may be needed.  15 

 16 

2.  Methods 17 

Children with mitochondrial disease and identified mutations who had previously 18 

undergone nerve conduction studies were identified from the mitochondrial diseases database 19 

at the Murdoch Childrens Research Institute, Melbourne, Australia, the records of the Genetic 20 

Metabolic Disorders Clinic at The Children’s Hospital at Westmead, Sydney, Australia, the 21 

Sydney Children’s Hospital Randwick Nerve and Muscle Clinic and the Neurophysiology 22 

Department at Great Ormond Street Children’s Hospital, London, UK. Nerve conduction 23 

studies were also performed prospectively according to a defined protocol (see 24 

Supplementary Methods) on children from the Genetic Metabolic Disorders Clinic at The 25 
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Children’s Hospital at Westmead who had identified mitochondrial mutations and consented 1 

to inclusion in the study. Children with pyruvate dehydrogenase complex (PDHc) deficiency 2 

were included if there was biochemical confirmation of the PDHc deficiency, even if a 3 

genetic mutation had not been identified. The data from both retrospective and prospective 4 

groups were combined and classified according to the underlying genetic cause. The results 5 

were compared with age-matched normative values (Cai and Zhang, 1997). Because of a lack 6 

of published paediatric electrodiagnostic criteria for demyelination in inherited neuropathies, 7 

the EFNS/PNS electrodiagnostic criteria for demyelination in chronic inflammatory 8 

demyelinating neuropathy were used (Hughes, et al., 2006).  These criteria require a 30% 9 

reduction of motor conduction velocity below the lower limit of normal in at least one nerve. 10 

Both retrospective and prospective studies were approved by the Sydney Children’s Hospital 11 

Network Ethics Committee (10/56), and the retrospective study at Great Ormond Street 12 

Hospital by the National Research Ethics Committee London Bloomsbury, UK.   13 

 14 

3.  Results 15 

Nerve conduction data were available from 27 children from 25 families with a 16 

genetically classified mitochondrial disease or biochemically-defined PDHc deficiency. The 17 

data were collected over a six-year period (2010-2015).  Retrospective nerve conduction 18 

studies were available for 20 children and prospective nerve conduction studies were 19 

performed on seven children. All nerve conduction studies in the retrospective series were 20 

performed because of the clinical suspicion of a neuropathy, except in individual 3, who was 21 

investigated because of the known association of a neuropathy with retinitis pigmentosa. One 22 

child in the prospective study also had data included from another nerve conduction study 23 

performed four years previously. Seven children had mitochondrial genome mutations and 20 24 

had nuclear DNA mutations (POLG – 7, SURF1 – 10, PDHc deficiency – 3). All genetic 25 
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diagnoses were established after Sanger sequencing of individual nuclear or mitochondrial 1 

genes or after testing of a panel of common mitochondrial genome mutations. None of the 2 

diagnoses were established by next generation sequencing technologies. All identified 3 

mutations have been previously reported as pathogenic except the c.897G>A (p.Met299Ile) 4 

variant in POLG (individual 9 in table 2). The neurophysiological results were categorised by 5 

the causative gene (Tables 1-4). 6 

 7 

3.1. Mitochondrial DNA mutations 8 

Neurophysiologic findings in seven children (from six families) with mutations in the 9 

mitochondrial genome were evaluated (Table 1). Three had Leigh/NARP (neurogenic muscle 10 

weakness, ataxia, and retinitis pigmentosa) syndrome due to the m.8993T>C mutation in MT-11 

ATP6, one had MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and 12 

stroke-like episodes) due to the m.3243A>G mutation in MT-TL1 and two individuals had 13 

single large mtDNA deletions. This group of children had normal studies or mild 14 

abnormalities, usually in the form of an axonal sensorimotor neuropathy.  15 

 16 

Of the children with MT-ATP6 mutations, two (individuals 1 and 3) had presented in 17 

the second year of life with developmental delay. Individual 1 had learning difficulties, 18 

choreoathetosis, cerebellar ataxia, hypotonia, areflexia and episodes of acute weakness with 19 

illness. His nerve conduction studies, done when not acutely ill, showed an axonal motor 20 

neuropathy affecting the lower limbs. Individual 3 had a NARP-like phenotype with retinitis 21 

pigmentosa but no clinical or neurophysiological evidence of a neuropathy. Individual 2 22 

presented at 11 years of age with severe brainstem involvement (central hypertension, 23 

hypoventilation, eye movement abnormality) following a respiratory infection with 24 
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widespread cortical, basal ganglia and brainstem changes on MRI. Her nerve conduction 1 

study showed an absent sural SNAP but was otherwise normal. 2 

 3 

One of the siblings with the m.3243A>G mutation in MT-TL1 had MELAS (patient 4 

5) while the other was asymptomatic (patient 4). The symptomatic sibling had presented at 10 5 

years of age with frequent headache and had a classical MELAS clinical profile with 6 

recurrent stroke-like episodes, multiple cortical infarcts, growth failure and seizures. Nerve 7 

conduction tests done when he was admitted with an acute stroke-like episode with acute 8 

sensorineural hearing loss, ataxia, bilateral intention tremor and reduced reflexes in the lower 9 

limbs showed an axonal predominantly motor neuropathy. The studies were repeated a year 10 

later, when he was well, and showed almost complete resolution of neuropathy with only 11 

borderline reduction of lower limb motor amplitudes.  12 

 13 

Prospective neurophysiological studies were undertaken in two individuals with 14 

single large mtDNA deletions. One child had Pearson syndrome with sideroblastic anaemia, 15 

renal Fanconi syndrome, growth failure, developmental delay and primary adrenal 16 

insufficiency while the other had Kearns-Sayre syndrome with sensorineural hearing loss, 17 

complete heart block, renal tubular acidosis, cerebellar ataxia, ptosis and ophthalmoplegia. 18 

Neither had neurophysiological evidence of a peripheral neuropathy. 19 

 20 

3.2. Nuclear DNA mutations 21 

3.2.1. POLG (Polymerase (DNA Directed), Gamma) 22 

Seven children with compound heterozygous or homozygous mutations in POLG, a 23 

nuclear gene responsible for mtDNA maintenance, were included in this study (Table 2). All 24 

the identified mutations have been previously reported as pathogenic except the c.897G>A 25 
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(p.Met299Ile) variant in POLG (individual 9). This mutation was seen in conjunction with a 1 

recurrent mutation, was in a mutational hotspot and was not found on the Exome Aggregation 2 

Consortium (ExAC) database. Two children presented within the first two years of life, one 3 

with a Myocerebrohepatopathy Spectrum phenotype and the other with gross motor delay. 4 

Both had failure to thrive, lactic acidemia, generalised hypotonia and areflexia. The other five 5 

patients presented between four and 15 years of age, four with focal seizures and stroke-like 6 

episodes while patient 12 presented with intestinal pseudo-obstruction. Two patients had liver 7 

dysfunction when treated with sodium valproate. Among the later presentations, features of a 8 

neuropathy (sensory ataxia, distal weakness and areflexia) were identified between 10 and 17 9 

years of age. Two patients also had sural nerve biopsies that showed an axonal neuropathy 10 

with loss of large myelinated fibres. Four of the seven patients had died between the ages of 2 11 

weeks and 31 years. 12 

 13 

Nerve conduction studies in the two youngest patients showed a demyelinating motor 14 

neuropathy. Nerve conduction studies in the older children invariably showed a severe axonal 15 

sensory neuropathy, irrespective of the age at which the studies were performed, with three of 16 

the older children having additional motor nerve involvement.  17 

 18 

3.2.2. SURF1 (Surfeit 1) 19 

Eleven nerve conduction studies from 10 children (from nine families; individuals 16 20 

and 23 were siblings) with homozygous or compound heterozygous SURF1 mutations were 21 

included in this study (Table 3). Seven of the children described here (patients 16, 17, 18, 19, 22 

20, 22, 23) were also included in a description of 44 individuals with SURF1 mutations by 23 

Wedatilake et al (Wedatilake, et al., 2013). Presentation was between three days and 18 24 

months of age with poor feeding, vomiting and poor weight gain. The associated neuropathy 25 
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was usually evident by 18 months of age with gait ataxia and tremor in the upper limbs. Other 1 

common features included growth failure, developmental regression, nystagmus and lactic 2 

acidemia. Brain MRI showed changes consistent with Leigh syndrome in all except one child 3 

who had a normal MRI at one year of age. Reduced or absent cytochrome c oxidase (COX) 4 

activity in muscle or cultured fibroblasts was seen in all nine children who had this tested. 5 

Nine of the children died between 20 months and seven years of age and one child was alive 6 

at 12 years. 7 

 8 

Seven children had a demyelinating neuropathy, with four having sensorimotor 9 

involvement and three isolated motor involvement. Three studies showed predominantly 10 

axonal changes with a mild reduction in motor conduction velocity. Unlike typical forms of 11 

CMT, the nerve conduction abnormalities were not length-dependent. Three children had 12 

only motor involvement on nerve conduction studies.  13 

 14 

3.2.3. PDHc Deficiency 15 

Three children with PDHc deficiency were included in this study. They had presented 16 

in the first two years of life with hypotonia and global or isolated motor delay. Episodes of 17 

lactic acidosis associated with generalised weakness and hypotonia were frequent initially but 18 

decreased in frequency with advancing age and dietary therapy. Two children also had 19 

intellectual delay while one had choreoathetosis and nystagmus. Brain MRI was 20 

characteristic of PDHc deficiency with abnormalities in the basal ganglia, substantia nigra 21 

and cerebellar white matter. The study in patient 27 was performed 8 weeks into an episode 22 

of acute weakness.  The nerve conduction studies showed a patchy axonal, non-length 23 

dependent sensorimotor neuropathy (Table 4). Sensory responses were universally absent, 24 

even in studies done at a young age.  25 
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3.  Discussion 1 

Normal mitochondrial function is essential for neuronal growth, function and survival 2 

(Sheng, 2014). The genes that affect mitochondrial function may cause peripheral neuropathy 3 

by alteration in the mitochondrial dynamics of fusion, fission and axonal transport, or due to 4 

abnormalities in energy production. (Cassereau, et al., 2009; Chen, et al., 2003; Hollenbeck 5 

and Saxton, 2005; Misko, et al., 2010; Sheng and Cai, 2012; Song, et al., 2009; Vallat, et al., 6 

2008). The neuropathy associated with CMT is usually length-dependent, with weakness 7 

starting and being more pronounced distally, and the lower limbs being affected earlier and 8 

more severely than the upper limbs. Neurophysiology in CMT often parallels this clinical 9 

picture with axonal degeneration (primary in CMT2 and secondary to a demyelinating 10 

process in CMT1), as measured by the CMAP and SNAP amplitudes,  of greater severity in 11 

the lower limbs (Kamholz, et al., 2000; Krajewski, et al., 2000; Scherer, 1999). In contrast, 12 

this study shows that the nerve conduction abnormalities in children with mitochondrial 13 

disease are generally not length-dependent.  14 

 15 

While our study was not designed to measure the absolute frequency of neuropathy in 16 

patients with mtDNA and nuclear DNA mutations, peripheral nerve involvement was more 17 

common in children with nuclear DNA mutations (7/7 children with POLG, 10/10 children 18 

with SURF1 and 3/3 children with PDHc deficiency) when compared with those with 19 

mtDNA mutations (3/7 children). Horga et al. found that in individuals with progressive 20 

external ophthalmoplegia, the presence of a peripheral neuropathy had the highest specificity 21 

(91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis 22 

of a nuclear DNA defect, as opposed to a mitochondrial gene defect (Horga, et al., 2014). 23 

  24 

 25 



Mitochondrial Neuropathy 

 

12 

 

4.1. Mitochondrial DNA mutations 1 

Peripheral neuropathy was uncommon in those with mtDNA mutations, with affected 2 

children having either normal nerve conduction studies or a mild neuropathy when not 3 

acutely ill. Out of the nine children in the cohort of adults and children with MELAS 4 

described by Kaufmann et al., five had normal nerve conduction studies while another three 5 

had only borderline reductions in peroneal CMAP amplitudes (Kaufmann, et al., 2006b). Of 6 

the 67 individuals with Leigh and Leigh-like syndrome described by Rahman et al, none of 7 

12 individuals with a mutation involving the mitochondrial genome had an identified 8 

peripheral neuropathy, although not all were investigated with nerve conduction studies 9 

(Rahman, et al., 1996). In individuals with the NARP phenotype, the presence of a peripheral 10 

neuropathy in the first two decades of life is specific to the m.9185T>C mutation (Childs, et 11 

al., 2007). Peripheral neuropathy is uncommon with single large mitochondrial deletions and  12 

has been described in only a single case report (McDonald, et al., 2002).   13 

 14 

4.2. Nuclear DNA mutations 15 

4.2.1.  POLG 16 

In our study, in those who presented beyond infancy, POLG mutations were 17 

associated with an axonal sensory neuropathy with variable motor involvement, with clinical 18 

onset in the second decade of life. While a ‘sensory ataxic neuropathy’ almost universally 19 

develops in individuals with late-onset POLG syndromes, its onset is usually late in the 20 

second decade or beyond (Hakonen, et al., 2005; Neeve, et al., 2012; Schulte, et al., 2009), 21 

although an earlier onset has occasionally been described (Tzoulis, et al., 2006; Wong, et al., 22 

2008). While hypotonia and areflexia are listed as features of POLG mutations in the first 23 

year of life, there are very few reports of the nerve conduction findings of affected children. 24 

Our study included two young children with POLG mutations and demyelinating motor 25 
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neuropathies. In a cohort of eight children with Alpers syndrome and POLG mutations, 1 

Ferrari et al. reported two infants with neurophysiological or biopsy evidence of a 2 

demyelinating neuropathy (Ferrari, et al., 2005). Recessive mutations in PEO1, the gene 3 

encoding mitochondrial Twinkle helicase, present with a similar phenotypic spectrum to 4 

POLG and are also associated with an early-onset sensory neuropathy (Lönnqvist, et al., 5 

2009). 6 

 7 

4.2.2.  SURF1 8 

SURF1 mutations were predominantly associated with a demyelinating neuropathy.  9 

In the report by Wedatilake et al, 13 of 16 individuals who had undergone nerve conduction 10 

studies had a neuropathy, which was demyelinating in seven cases. Echaniz-Laguna and 11 

colleagues have reported two families presenting with SURF1 mutations with a childhood-12 

onset demyelinating sensorimotor neuropathy, initially diagnosed as CMT (Echaniz-Laguna, 13 

et al., 2013). MNGIE (mitochondrial neurogastrointestinal encephalomyopathy) due to 14 

mutations in the TYMP gene is also reported to be associated with a childhood-onset 15 

demyelinating neuropathy (Garone, et al., 2011; Hirano, et al., 2004). 16 

 17 

4.2.3. PDHc deficiency 18 

PDHc deficiency was characterised by axonal sensorimotor neuropathy. Previously 19 

published case reports and a single case series of children with PDHc deficiency and 20 

neuropathy describe a predominantly axonal neuropathy with significantly reduced CMAP 21 

amplitudes and mildly reduced nerve conduction velocities (Bonne, et al., 1993; Chabrol, et 22 

al., 1994; Di Rocco, et al., 2000; Federico, et al., 1990; Koga, et al., 2012; Marsac, et al., 23 

1997). In these reports, the axonal neuropathy was recognised in both those investigated prior 24 

to institution of treatment with thiamine as well as those on treatment. Only a single 25 
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individual had a more significant reduction of median motor conduction velocity, which 1 

improved from 19.8m/s to 37.9m/s following treatment with thiamine (Di Rocco, et al., 2 

2000). Long term treatment with dicholoroacetate, used to treat lactic acidosis in children 3 

with PDHc deficiency, has been shown to cause a reversible axonal neuropathy and animal 4 

studies have shown that thiamine may mitigate the severity of this neuropathy (Berendzen, et 5 

al., 2006; Kaufmann, et al., 2006a; Stacpoole, et al., 1990). 6 

 7 

4.3. Acute neuropathy with mitochondrial disease 8 

An acute neuropathy has only rarely been described in mitochondrial disease (Coker, 9 

1993; Hara, et al., 1994; Stickler, et al., 2003).  In our study, one child with MELAS 10 

developed an acute axonal neuropathy during an acute stroke-like episode. Acute reversible 11 

axonal dysfunction related to energy failure in peripheral nerves has been shown to occur 12 

during stroke-like episodes in MELAS (Farrar, et al., 2010). It is possible that an acute 13 

neuropathy accompanies stroke-like episodes in MELAS but is under-recognised due to the 14 

prominent central nervous system features.  In our study, two children with PDHc deficiency 15 

had evidence of an axonal sensorimotor neuropathy on studies performed when they were not 16 

acutely ill. Debray et al. described 13 individuals with PDHc deficiency and acute weakness. 17 

Of the seven who had undergone nerve conduction studies, five had evidence of a peripheral 18 

neuropathy (Debray, et al., 2006). The lack of nerve conduction studies before the onset of 19 

weakness or after recovery makes it difficult to determine if the neuropathy was chronic or if 20 

an acute metabolic neuropathy or worsening of a pre-existing neuropathy was responsible for 21 

the acute weakness.  22 

 23 

The combination of retrospective and prospective data is a limitation of this study, 24 

with the retrospectively collected studies having been performed with different protocols. As 25 
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the retrospective group included only those known to have had nerve conduction studies on 1 

the clinical suspicion of a neuropathy, this study was not designed to characterise the 2 

frequency of peripheral neuropathy in different mitochondrial diseases. It is, however, the 3 

largest study to date of peripheral neuropathy in genetically- classified childhood 4 

mitochondrial disease and provides valuable data on the characteristics of the peripheral 5 

neuropathy associated with different mitochondrial diseases.  6 

 7 

3. Conclusion 8 

We have characterised the neuropathy associated with the major genetic classes of 9 

childhood mitochondrial disease. Our findings may help to classify the mitochondrial 10 

syndrome and direct genetic testing. Detailed phenotyping including the characteristics of the 11 

associated neuropathy may also be useful in confirming the pathogenicity of variants found in 12 

whole exome/genome sequencing. In contrast to CMT, the neuropathy of paediatric 13 

mitochondrial disease is not length-dependent. Nerve conduction studies should be an 14 

integral component of the diagnostic evaluation of suspected childhood mitochondrial 15 

disease. 16 

 17 
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Table 1: Neurophysiological profile of children with mitochondrial genome mutations (n=7) 

Pt./    
Sex 

Syndrome Mutation 
Age at 

presentation 

Signs 
suggestive of 
neuropathy 

Age at NCS, 
Retrospective
/Prospective 

Upper limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Lower limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Upper limb 
sensory 

[µV] 

Lower limb 
sensory 

(µV) 

1/M Leigh 
MT-ATP6 
m.8993T>C 

2y 

hypotonia, 
ataxia, 

generalised 
weakness 

(acute with 
illness) 

5y/R 
(M) 14.2/54 
 

(P) 1.7/46 
(T) 1.4/38 

(M) 25 (S) 38 

2/F Leigh 
MT-ATP6 
m.8993T>C 

12y 
 
- 

12y/P (M) 4.9/52  
(P) 3.5/43 
 

(M) 16 (S) NR 

3/F NARP 
MT-ATP6 
m.8993T>C 

16y 
 
- 

16y/R (M) NA/46  
(P) NA/46 
 

(M) 15 (S) 10 

4/M MELAS 
MT-TL1 
m.3243A>G 

9y 
 
- 

11y/P 
(M) 9/54  
(U) 9.6/60 

(P) 5.3/46 
(T) 17.3/49 

(M) 26 
(U) 20 

(S) 5 

5/M MELAS 
MT-TL1 
m.3243A>G 

10y 

ataxia, 
areflexia  

(during acute 
episode) 

12y/P 
(M) 2.7/56 
(U) NR/NR 

(P) NR/NR 
(T) NR/NR 

(M) 23 
(U) 15 

(S) NR 

13y/P 
(M) 10.3/59 
(U) 9.5/59 

(P) 2.0/47 
(T) 8.7/51 

(M) 26 
(U) 12 

(S) NR 

6/M Pearson 
single mtDNA 
deletion 

7m 
 
- 

4y/P 
(M) 7.6/45 
(U) 6.7/62 

 
(T) 9.9/48 

(M) 35 (S) 9 

7/M 
Kearns-
Sayre 

single mtDNA 
deletion 

11y 
 
- 

15y/P 
(M) 14.8/68 
(U) 13.9/65 

(P) 5.1/58 
(T) 23.2/58 

(M) 10 
(U) 11 

(S) 16 

 

Abnormal results (< 2SD) in bold. Reference values from Cai et al.(Cai and Zhang, 1997). Hz – homozygous, w-weeks, m– months, y-years, R 

– retrospective, P – prospective, CMAP – compound muscle action potential, CV – conduction velocity, SNAP – sensory nerve action potential, 
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M – median, U – ulnar, P – peroneal, T – tibial, S – sural, Sp – superficial peroneal, Mp – medial plantar, NR – not recordable, NA – not 

available, sup – superficial, empty box indicates this nerve was not studied  
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Table 2: Neurophysiological profile of children with POLG mutations (n=7) 

Pt./     
Sex 

Mutation 
Age at 
presentation 

 
Signs suggestive of 
neuropathy 

Age at NCS, 
Retrospective/
Prospective  

Upper limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Lower limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Upper limb 
sensory 
[µV] 

Lower limb 
sensory 
(µV) 

8/M 
c.1399G>A/
c.695G>A 

2w hypotonia, areflexia 2w/R 
 
(U) NA/8 

 
(T) NA/10   

9/M 
c.2551A>G/
c.897G>A 

7 m hypotonia, areflexia 1y/R (M) 4.5/16.7 
(P) 1.1/25.5 
(T) 1.7/25.7 

(M) NR (S) NR 

10/F 
Hz 

c.911T>G 
4y 

foot drop, ataxia, 
distal lower limb 

weakness, distal lower 
limb sensory loss, 

areflexia 

10y/R (M) 8.8/56 
(P) 4.0/49 
(T) 9.0/47 

(M) NR 
(U) NR 

(S) NR 

11/F 
Hz 

c.1399G>A 
7y 

ataxia, tremor, 
areflexia 

13y/R (M) 10.4/48 (P) 2.7/45 (M) 20 
(S) NR                                                       
(Sp) NR  

16y/R 
 
(U) 6.4/46 

(P) 1.8/42 
(T) 4.6/NA 

(M) 19 
(S) NR                                                       
(Sp) NR  

12/M 
c.1943C>G/
c.926G>A 

12y 

pes cavus, foot drop, 
ataxia, distal lower 

limb weakness, distal 
lower limb sensory 

loss, areflexia 

16y/R 
 
(U) NA/23 

 
(T) NR/NR 

(M) NR 
 

13/M 
c.2551A>G/
c.3140G>A 

17y 

 
pes cavus, ataxia, 
distal lower limb 

weakness, areflexia 

17y/R 
 
(U) NA/47.8 

(P) NR/NR 
(M) 6.7 
(U) 6.1 

(S) NR 

14/F 
Hz 

c.1399G>A 
15y 

 
ataxia, areflexia 

19y/R 
(M) 14.1/46.8 
(U) 6.1/49.4 

(P) 3.0/45 
(T) 2.7/39.3 

(M) NR 
(U) NR 

(S) NR                                                        
(Sp) NR  

 

Abnormal results (< 2SD) in bold. Reference values from Cai et al.(Cai and Zhang, 1997). Hz – homozygous, w-weeks, m– months, y-years, R 

– retrospective, P – prospective, CMAP – compound muscle action potential, CV – conduction velocity, SNAP – sensory nerve action potential, 
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M – median, U – ulnar, P – peroneal, T – tibial, S – sural, Sp – superficial peroneal, Mp – medial plantar, NR – not recordable, NA – not 

available, sup – superficial, empty box indicates this nerve was not studied  
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Table 3: Neurophysiological profile of children SURF1 mutations (n=10) 

Pt./     
Sex 

Mutation 
Age at 

presentation 

Signs 
suggestive of 
neuropathy 

Age at NCS, 
Retrospective
/Prospective 

Upper limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Lower limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Upper limb 
sensory 

[µV] 

Lower limb 
sensory 

(µV) 

15/M 
c.312_320del10insAT/                 
c.532_535delAATA 

10m 

 
Areflexia 12m/R (M) NA/28.4 

 
(T) NA/22.2 

(M) 17.1 (S) NR 

16/M Hz c.516-2A>G 3d 

 
Ataxia, Tremor 14m/R  

 
(T) 4.1/21  

(S) 14 

17/M Hz c.324-11T>G 9m 

 
Ataxia 18m/R  

 
(T) 1.5/14  

(S) NR 

18/M 
Hz 
c.312_320del10insAT 

10m 

 
Ataxia, Tremor 18m/R  

 
(T) 4.5/43  

(S) 3 

19/M Hz c.516-2A>G 4m 

 
Ataxia 21m/R  

 
(T) 5.4/35.8  

(S) 9.2 

20/F Hz c.751C>T 9m 

 
 
 
Ataxia, Tremor 

2y/R  
 
(T) 7.5/22 

(M) NR 
 

7y/R 
(M) 0.6/NA 
(U) 0.6/19.5 

 
(T) 4/NA 

(M) NR (S) NR 

21/M 
Hz 
c.312_320del10insAT 

18m 

 
Ataxia, Tremor, 
Areflexia 

2y/R 
(M) 9.4/36.9 
 

 (M) 6.8 (S) NR 

22/F 
c.240+1G >T, 
c.575G>A 

18m 

 
Ataxia, Tremor 2y/R 

 
(U) 4.7/43 

 
(T) 5.3/26 

(R) 23   (Pm) 21 

23/M Hz c.516-2A>G 10 

 
NA 4y/R 

 
(U) 4.9/28 

(P) 3.5/28 
(T) 3.9/18 

(R) 24  (S) NR 

24/F Hz c.792_793delAG 2y 

 
Ataxia, Tremor, 
Areflexia 

5y/R (M) 5.6/31.9 (P) 1.4/31.3 
(M) 6 
(U) 7.6  
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Abnormal results (< 2SD) in bold. Reference values from Cai et al.(Cai and Zhang, 1997). Hz – homozygous, w-weeks, m– months, y-years, R 

– retrospective, P – prospective, CMAP – compound muscle action potential, CV – conduction velocity, SNAP – sensory nerve action potential, 

M – median, U – ulnar, P – peroneal, T – tibial, S – sural, Sp – superficial peroneal, Mp – medial plantar, NR – not recordable, NA – not 

available, sup – superficial, empty box indicates this nerve was not studied  
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Table 4: Neurophysiological profile of children with PDHc deficiency (n=3) 

Pt./Sex Mutation 
Age at 

presentation 

 
Signs 

suggestive of 
neuropathy 

Age at NCS, 
Retrospective
/Prospective 

Upper limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Lower limb 
motor 

[CMAP(mV)/ 
CV(m/s)] 

Upper limb 
sensory 

[µV] 

Lower limb 
sensory 

(µV) 

25/M 
PDHA1 
c.787C>G 

11m 

 
 
 
 
 
episodic 
acute 
weakness, 
areflexia 

1yr/R 
(M) 3.7/39 
(U) 4.0/52 

(P) 2.1/52 
(T) 3.9/42 

(M) NR 
(U) NR 

(S) NR 

5y/P 
(M) 4.8/52 
(U) 2.7/58 

(P) 1.6/52 
(T) 4.9/47 

(U) NR (S) NR 

6y/P 
(M) 6.9/50 
(U) 3.8/55 

(P) 1.9/47 
(T) 2.5/37 

(M) NR 
 

(S) NR 

26/M NT 5m 

 
- 

7y/P 
(M) 4.9/43 
(U) 5.4/47 

(P) 1.9/35 
(T) 4.4/35 

(M) NR 
(U) NR 

(S) NR 

27/M NT 3y 

 
distal 
weakness, 
areflexia 

11y/R                      
(8 weeks into 
acute 
episode) 

(M) 0.7/57 
(U) 5.5/51 

(P) NR/NR 
(T) 0.2/36 

(M) NR 
 

(S) NR 

 

Abnormal results (< 2SD) in bold. Reference values from Cai et al.(Cai and Zhang, 1997). Hz – homozygous, w-weeks, m– months, y-years, R 

– retrospective, P – prospective, CMAP – compound muscle action potential, CV – conduction velocity, SNAP – sensory nerve action potential, 

M – median, U – ulnar, P – peroneal, T – tibial, S – sural, Sp – superficial peroneal, Mp – medial plantar, NR – not recordable, NA – not 

available, sup – superficial, empty box indicates this nerve was not studied  
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SUPPLEMENTARY METHODS 

 

Nerve conduction tests  

Nerve conduction tests were performed using a Viking™ On Nicolet™ EDX 

Electrodiagnostic System from CareFusion Nicolet with surface electrodes. Sedation with 
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nitrous oxide was used in some children above the age of 12 months. For the motor studies, a 

supramaximal rectangular pulse direct current stimulus was delivered using a two-prong 

stimulator, to elicit a compound muscle action potential (CMAP).  The median nerve was 

stimulated at the wrist and elbow and the CMAP was recorded over the bulk of the abductor 

pollicis brevis (APB) muscle. The ulnar nerve was stimulated over the wrist and behind the 

elbow and the CMAP was recorded over the bulk of the abductor digiti minimi (ADM) 

muscle. The common peroneal nerve was stimulated over the ankle and knee and the CMAP 

was recorded over the bulk of the extensor digitorum brevis (EDB) muscle. The tibial nerve 

was stimulated over the ankle and behind the knee and the CMAP was recorded over the bulk 

of the abductor hallucis (AH) muscle. The sweep speed and sensitivities were 5 ms/division 

and 5 mV/division respectively. The duration of the stimulus was 0.1ms.  

 

The sensory nerve action potential (SNAP) was recorded by an orthodromic technique for the 

upper limb (median and ulnar) nerves and by an antidromic technique for the lower limb 

(sural) nerve. For the median nerve, the stimulus was delivered by ring electrodes over the 

index finger (digital branch of the median nerve) and SNAPs were recorded over the wrist. 

For the ulnar nerve, the stimulus was delivered by ring electrodes over the little finger (digital 

branch of the ulnar nerve) and SNAPs were recorded over the wrist. For the sural nerve, the 

stimulus was delivered above the lateral malleolus, approximately 14 cm from the proximal 

recording electrode which was placed on the lateral border of the foot. All sensory potentials 

were recorded using a recurrent stimulus and with averaging using a supramaximal stimulus. 

The stimulus duration was 0.1ms and the sweep speed and sensitivities were 1 ms/division 

and 10 µV/division respectively. 
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The distal motor latencies, CMAP amplitudes and conduction velocities were recorded using 

conventional methods. CMAP and SNAP amplitudes were measured from baseline to the 

negative peak of the action potential. The distal motor latency was calculated from the 

stimulus artefact to the initial negative deflection from the baseline. Normative data was 

sourced from Cai et al. (Cai and Zhang, 1997). The neuropathy was designated as 

demyelinating when the nerve conduction velocity was reduced to < 70% of the lower limit 

for that age range (lower limit = mean-2SD). The neuropathy was designated as axonal when 

there was a reduction in the CMAP amplitude and there was no reduction in the conduction 

velocity, or the reduction did not satisfy criteria for demyelinating neuropathy. Care was 

taken when the CMAP amplitude was <1mV as it is known that measures of conduction 

velocity in this setting can be erroneous and appear pseudo-demyelinating due to preferential 

loss of faster conduction fibres. 

 

 


